From single molecules to heart disease

Fundación Centro Nacional de Investigaciones Cardiovasculares

Jorge Alegre-Cebollada

A thought experiment involving time travel

How long would it take for them to understand how a Ferrari works?

How far are we from understanding the heart?

A single amino acid substitution can cause cardiovascular disease

And channelopathies, cardiomyopathies, hypercholesterolemia...

A SINGLE AMINO ACID SUBSTITUTION CAN CAUSE CARDIOVASCULAR DISEASE!!!!

Number of people in the world: 7×10^9

Genetics vs. risk factors

Risk factors

Sudden death

Diagnostic reasons

Therapeutic reasons

Polymorphism or pathogenic mutation?

Drugs that restore healthy phenotype

Why a particular missense mutation causes disease?

1. <u>Decreased thermodynamical stability/protein levels</u> (haploinsufficiency)

It is considered to be a major driver of pathogenesis JMB 353, 459 (2005).

- 2. <u>Defective activity (catalytic activity of an enzyme)</u> Difficult to predict, challenging to determine experimentally
- 3. <u>New toxic properties (poison peptide)</u> e.g. Hemoglobin

4. Pre-protein effects

RNA levels, alternative splicing leading to truncations, etc.

5. <u>Defective mechanical properties</u>

Highly relevant for proteins or the contractile machinery of the sarcomere

Why single molecules?

Maritime routes between New York and San Francisco

Average vs single trajectories

By averaging we loose information

Example listened to Steve Block, a pioneer in single-molecule optical tweezers

Advantages of single-molecule approaches

- 1. Novel information that cannot be obtained in bulk
- Access to individual properties that are not accesible to bulk experiments
- Synchronization
- Access to vectorial properties: movement, force, etc...

Random orientation of molecules in bulk

Molecular Motors

2. Less material is needed/parallelization: next-generation DNA sequencing

Nanopore technology (Oxford Nanopores)

Single-molecule fluorescence

Manipulation: application of mechanical forces

- Atomic Force Microscopy (AFM), magnetic tweezers, optical tweezers, nanopores
- Observation
 - fluorescence

First single-molecule techniques

Electron Microscope E. Ruska Nobel Prize in Physics, 1986

Single-channel patch clamp

E. Neher y B. Sakmann Nobel Prize in Physiology or Medicine, 1991

- Complex instruments and experiments
- Signal is small: how can we tell apart signal from noise?
- New mindset
- New methods of analysis and interpretation of results

Mechanical forces and proteins: from the cradle to the grave

Oxidative folding

Proteasomal degradation

The sarcomere is the functional unit of striated muscle

Sarcomere organization as observed by electron microscopy

Sarcomere organization as observed by electron microscopy

9-3 Organization of the myofibril. (A) Diagram of three sarcomeres, showing thick and thin myofilaments forming I, A, and H bands and Z lines. (B) Imaginary sections through the sarcomere at different levels show profiles of thin (left) and thick (right) filaments, and both types (center). (C) Electron micrograph of a cross section in which the sarcomeres of adjacent myofibrils are out of register and can thus be matched with the corresponding profiles shown above. Spider monkey extraocular muscle. Magnification 100,000×. [Courtesy of L. D. Peachey.]

The sliding filament hypothesis of muscle contraction

Both authors independently proposed the sliding filament hypothesis in 1952

Testing the sliding filament hypothesis

It's not only about contraction...

Muscle is elastic!

We need passive elasticity

"Compared with other carnivores, [humans] are slow, weak and lack natural weapons such as fangs and claws.

However, [humans] were eating meat at least 2.6 million years (Myr) ago, and were probably hunting large prey 1.9 Myr ago..."

Roach, Venkadesan, Rainbow & Lieberman, Nature 2013

Titin is **BIG**, a molecular Titan

Wang et al. PNAS 76, 3698 (1979)

Titin is the largest protein in the human proteome (up to 4 MDa)

The titin gene

(0.28 Mbp, 363 exons)

Titin has beads-on-a-string appearance

Linke et al. J Cell Sci 111, 1567 (1998)

Protein elasticity is determined by protein unfolding/refolding

Mechanical forces and exposure of cryptic binding sites

Mechanosensing and mechanotransduction

The mechanics of the myocardium is defective in cardiomyopathies

From "Pathophysiology of Heart Disease", 5th Edition, Ed. Leonard S. Lilly

Mutations in sarcomeric proteins lead to familial cardiomyopathy

Genotype to phenotye?

Single-molecule techniques: manipulation

AFM

Force spectroscopy by Atomic Force Microscopy

The *pioneer technique* to measure *mechanical properties* of proteins

Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM

Matthias Rief, Mathias Gautel, Filipp Oesterhelt, Julio M. Fernandez, Hermann E. Gaub*

Science (1997) 276, 1109

Constant-velocity experiments: force-extension

A more realistic view of an AFM pulling experiment

Polyproteins are *"minititins"*

Polyprotein engineering for force spectroscopy

Optical microscope Force sensor

Home-made AFM

Commercial AFM

At CNIC

AFM cantilevers for single-molecule experiments

Spring constant: 5-20 pN/nm

Enfoque del láser

Worm-like chain model of polymer elasticity

The importance of fingerprinting single-molecule data

Non-specific interactions happen close to the surface

Constant force experiments: force-clamp

- Better approach to determine force dependencies
- Feedback systems to keep the force at a predefined set point

A force-clamp experimental trace

New mindset: Single-molecule events are stochastic

SINGLE-MOLECULE Vs. BULK

Crossing of energy barriers at the single-molecule level

Measuring kinetics of mechanical protein unfolding

 $P(U) = 1 - e^{-k(F) \cdot t}$

Force-dependent mechanical unfolding

The higher the force, the faster proteins unfold

Mechanical refolding by AFM

Molecular determinants of the mechanical stability of proteins

Mechanical stability: (β -shearing > β -unzipping > alpha)

Molecular determinants of the mechanical folding of proteins

Folding?

An example of single-molecule experiments informing about biology: Thiol chemistry controlling titin elasticity

Titin's buried (cryptic) cysteines

Redox posttranslational modifications in muscle

S-glutathionylation inhibits protein folding

Inhibition of folding Softening of the tissue

The elasticity of cardiomyocytes is modulated by S-glutathionylation of titin's cryptic cysteines

In collaboration with Nazha Hamdani and Wolfgang Linke (Bochum University, Germany)

Alegre-Cebollada*, Kosuri* *et al.* **Cell**,156, 1235 (2014)

MT Magnetic tweezers

-00 Ν S S Ν Bead Protein zoom in Piezo Illuminator camera

Magnetic tweezers

Magnetic tweezers to examine the mechanical properties of proteins

OT Optical tweezers

Folding-Unfolding Transitions in Single Titin Molecules Characterized with Laser Tweezers

Miklós S. Z. Kellermayer,*† Steven B. Smith,* Henk L. Granzier,‡ Carlos Bustamante*

Science (1997) 276, 1112

Optical tweezers

Double trap

https://youtu.be/gOA7wvycV-Q

Advantages

- Good sensitivity at < 20 pN
- Controlled manipulation: versatility

Disadvantages

- Complex instrumentation for high resolution studies
- Need of molecular handles

Measuring the activity of molecular motors using OT

- Single-molecule methods provide new information that may be relevant to understand the pathophysiolgy of (heart) diseases.
- Many key biomolecules experience or produce mechanical force
- Single molecules behave stochastically
- Main single molecule manipulation techniques: AFM, MT, OT
- A new mindset and novel analysis tools

RESEARCH ARTICLE

BIOCHEMISTRY

Contractility parameters of human β -cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function

2015 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 10.1126/sciadv.1500511

Suman Nag,¹ Ruth F. Sommese,¹ Zoltan Ujfalusi,² Ariana Combs,³ Stephen Langer,³ Shirley Sutton,¹ Leslie A. Leinwand,³ Michael A. Geeves,² Kathleen M. Ruppel,^{1,4} James A. Spudich¹

Single Molecule Force Spectroscopy on Titin Implicates Immunoglobulin Domain Stability as a Cardiac Disease Mechanism^{*}

Received for publication, July 16, 2012, and in revised form, December 10, 2012 Published, JBC Papers in Press, January 6, 2013, DOI 10.1074/jbc.M112.401372 Brian R. Anderson^{‡§}, Julius Bogomolovas[¶], Siegfried Labeit[¶], and Henk Granzier^{§1}

- Neuman, K. C. & Nagy, A. (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. *Nat Methods* 5, 491-505.
- Popa, I., Kosuri, P., Alegre-Cebollada, J., Garcia-Manyes, S. & Fernandez, J. M. (2013) Force dependency of biochemical reactions measured by single-molecule forceclamp spectroscopy. *Nat Protoc* 8, 1261-1276.
- Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. (2008) Advances in singlemolecule fluorescence methods for molecular biology. *Annu Rev Biochem* 77, 51-76.
- Linke, W. A. & Hamdani, N (2014). Gigantic business: titin properties and function through thick and thin. *Circ Res* **114**, 1052-1068.

For any question or feedback: jalegre@cnic.es

Some of the world-leading single-molecule laboratories

Single-molecule in Madrid

Optical Tweezers J. Ricardo Arias-González (IMDEA-Nanociencia) Borja Ibarra (IMDEA-Nanociencia)

Fluorescence

Also Félix Ritort (U. Barcelona, Optical Tweezers), Raúl Pérez-Jiménez (Nanogune, AFM)...

Mechanobiology Seminar Series at CNIC. If interested, send an email to jalegre@cnic.es

From single molecules to heart disease

Fundación Centro Nacional de Investigaciones Cardiovasculares

Jorge Alegre-Cebollada