### Intercellular signaling in cardiovascular development, homeostasis and disease



targets for CVD

# The NOTCH signaling pathway



# **TOOLS GENERATED**

MacGrogan et al. (2018) Nat Rev Cardiol.

Genetically modified mouse models

Molecular tools

Explant assays

Cell lines

### **FUNCTIONS DESCRIBED**

- Cell fate specification
- Cell proliferation
- Cell differentiation
- Stem cell maintenance
- Tissue patterning
- Oncogenesis

### **PREVIOUS CONTRIBUTIONS**

Development 1995: 121, 3291 Development 1997: 124, 1139 Neuron 1998: 20, 469 Curr Biol 1999: 9, 470 Cell 2001: 106, 207 Genes Dev 2003: 17, 1213 Genes Dev 2004: 18, 99 Development 2005: 132, 1117 Dev Cell 2007: 12, 415 Leukemia 2007: 21, 1496 J Exp Med. 2009: 206, 779 PLoS Genet. 2009: 5, e1000662 *JCI* 2010:120, 3493 Curr Top Dev Biol. 2010: 92, 333 *Circ Res* 2011: 108, 824 Circ Res 2011: 109, 1429 ATVB 2011: 31, 1580 Cardiovasc Res. 2012: 93, 232 Dev Cell 2012: 22, 244 Development 2013: 140,1402 Genesis 2013: 51, 32. Breast Cancer Res. 2013:15, R54 Nat Med 2013: 19, 193

# I. Valve development & disease. Previous work: Notch is required for cardiac valve primordium formation



AVC myocardium



# • Recent work: Myocardial Bmp2 patterns the valve-forming region upstream of Notch



• Recent work: Jag1-Notch signaling regulates mesenchyme proliferation during cardiac valve morphogenesis



#### II. Ventricular chamber development & cardiomyopathy. Previous work: Mutations in MIB1 cause LVNC



#### Recent work. Ventricular chamber development: Trabeculation & Compaction



#### • Ongoing: Functional analysis of Mib1 alleles found in LVNC families

Generation of *MIB1*<sup>R530X</sup> and *MIB1*<sup>V943F</sup> alleles in mice using Crispr-Cas9 gene edition



- Mib1 inactivation in the myocardium (Mib1<sup>R530X/flox</sup>;cTnT-Cre) leads to LVNC. Similar to Mib1<sup>flox/flox</sup>;cTnT-Cre.
  Mib1<sup>R530X/+</sup>: No LVNC. BAV and VSD when combined with Notch1 LOF.
- 2. *Mib1*<sup>V943F</sup>: No LVNC phenotype in heterozygous or homozygous conditions. BAV and VSD when combined with *Notch1* LOF.

- Modifiers? Oligogenic inheritance? Exome

### Exome sequencing: 84 individuals (24 families, including healthy controls and at least two LVNC samples)

#### Different possibilities:

- 1. Mutations affecting the NOTCH pathway
- 2. Mutations in mediators of endocardium-myocardium communication
- 3. Mutations in structural/sarcomeric/ ion channels/metabolic genes



• All these possibilities could be intervening alone or in combination to cause LVNC

# Arg530X (H862) family



LVNC due to the presence of *R530X APCDD1 ASXL3* heterozygous mutations? Mouse models by Crispr-Cas9 gene edition

acids Existing\_variatio rs3748415

rs181303838

0/0

0/0

0/0

0/0

0/0

0/0

rs201850378&CM130893

0/0

a/n

0/0

0/0

0/0

0/0

## V943F (H243) family

•



LVNC due to the presence of *V943F CEP192 TMX3; BCL7A* heterozygous mutations? Mouse models

#### Future work:

### 1. Valves

-Mechanisms regulating valve mesenchyme proliferation downstream of NOTCH: Hbegf GOF, Cxcl12 LOF. Impact in BAV?

- -Mib1-Gata6 and BAV
- -*Mib1; TercKO* and CAVD

-Gene profiling of human valve development and CAVD disease: Early disease marker identification & validation

### 2. Ventricles/cardiomyopathies

-Role of *Gpr126, Nrg1/ErbB2 & EphrinB2* (Notch targets) in ventricular wall development: Live imaging and functional studies -scRNA-seq: Genetic transitions in compaction

-NOTCH-dependent transcriptional regulatory landscape during ventricular wall development (ATAC-seq)

-CM differentiation of MIB1R530X and MIB1V943F hiPSC

-Oligogenic inheritance of LVNC: MIB1-TMX3-CEP192 and MIB1-APCDD1-ASXL3 mouse models

-Sarcomeric genes (MYBPC3), HCM and LVNC: MYBPC3<sup>R887A fs\*160</sup>, MYBPC3<sup>c.26-2A>G</sup> and MYBPC3<sup>P108A fs\*9</sup>

#### **RELEVANCE AND TRANSLATIONAL IMPACT:**

- Understand the mechanisms controlling valve mesenchyme proliferation
- Understand the mechanisms underlying BAV (affects 1-2% of the population: Lewin and Otto, Circulation 2005)
- Identification of early valve disease markers
- Understand the molecular and celular bases of ventricular chamber development
- Contribute to understand the genetics of LVNC (prevalence 0.05–0.3%, Towbin et al., Lancet 2015) and its relation with HCM
- Identify the developmental and/or structural bases of LVNC