Mechanobiochemistry

Jorge Alegre-Cebollada

Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III

Single-molecule Mechanobiochemistry at CNIC Bridging Molecular Mechanobiology and Cardiac Disease

i. How do posttranslational modifications (PTMs) regulate elasticity in vivo?

Cristina Sánchez

ii. <u>Measure the mechanical properties of mutant proteins causing</u> <u>cardiomyopathy</u>

Carmen Suay

iii. Production of biomaterials whose mechanical properties are regulated by physiological cues

Carla Huerta

The elasticity of the myocardium is key to an efficient heart

The mechanics of the myocardium is defective in cardiomyopathies

From "Pathophysiology of Heart Disease", 5th Edition, Ed. Leonard S. Lilly

The sarcomere is the functional unit of striated muscle

Mutations in structural proteins lead to familial cardiomyopathy

Genotype to phenotye?

The elasticity of striated muscle can be modulated

Protein elasticity is determined by protein unfolding/refolding

Novel technology Single-molecule Atomic Force Microscopy (AFM)

Popa*, Kosuri*, Alegre-Cebollada, et al. Nat Prot, 8, 1261 (2013)

Polyprotein engineering for force spectroscopy

Single-molecule AFM Mechanical unfolding and refolding

Covalent anchoring of polyproteins using HaloTag chemistry

Popa, Berkovich, Alegre-Cebollada et al. JACS 135, 12762 (2013)

Experimental objectives (i)

How do redox posttranslational modifications regulate elasticity?

Thiol chemistry controlling titin elasticity

Titin's buried (cryptic) cysteines

Disulfide bonds as regulators of polymer elasticity

Vulcanization

Disulfide bonds as regulators of protein elasticity

Limited extension: stiffer protein

Detection of cryptic disulfides in titin Ig domains

Time

Wiita *et al.* **PNAS** 103, 7222 (2006) Kosuri, Alegre-Cebollada *et al.* **Cell**, 151, 794 (2012)

We pull from an Ig domain of cardiac titin.

Direct observation of disulfide isomerization

Alegre-Cebollada *et al.* **Nature Chemistry** 3, 882 (2011) Solsona *et al.* **J Biol Chem**, 289, 26722 (2014)

What about unpaired cysteines? S-glutathionylation of titin

S-glutathionylation inhibits protein folding

S-Glutathionylation decreases mechanical stability

The elasticity of cardiomyocytes is modulated by S-glutathionylation of titin's cryptic cysteines

motor

In collaboration with Nazha Hamdani and Wolfgang Linke (Bochum University, Germany)

Molecular yoga: a novel role for buried residues in proteins

Alegre-Cebollada*, Kosuri* et al. Cell, 156, 1235 (2014)

Mass spectrometry to determine posttranslational modifications

Preliminary results Posttranslational modifications of buried cysteines in titin

Disulfide bonds

Other redox modifications

- S-glutathionylation
- S-nitrosylation
- Sulfenylation

In-gel detection of reduced thiols

Monobromobimane (mBBr)

$R-SH + mBBr \rightarrow$ Fluorescent derivative

Experimental objectives (ii) Mechanical properties of mutant proteins causing cardiomyopathy

Diagnostic reasons

Therapeutic reasons

SNP or pathogenic mutation?

Drugs that restore healthy phenotype

Experimental objectives (iii) Biomaterials that mimic the elasticity of muscle

Titin's I27 domain

Saqlain et al. Macromol Mater Eng 300, 369 (2015)

Stiffness depends on reversible protein unfolding/refolding

Saqlain et al. Macromol Mater Eng 300, 369 (2015)

Mechanobiology Seminar Series at CNIC. If interested, send an e-mail to jalegre@cnic.es

Linke et al. J Cell Sci 111, 1567 (1998)