Ext. 2021
Jorge Alegre-Cebollada

We are a multidisciplinary team of scientists who use biochemistry, biophysics and single-molecule techniques to understand the mechanics of heart tissue and its regulation in health and disease.

Ext. 1502
Vicente Andrés García

The World Health Organization has estimated that cardiovascular disease (CVD) will by 2020 be the main health and socio-economic problem worldwide, in part due to the progressive aging that the world population is experiencing. Atherosclerosis and heart failure contribute significantly to CVD-related morbimortality in the elderly.

Ext. 3115
Rui Benedito

Blood and lymphatic vessels are not simply conduits for the body’s fluids; they also control essential biological responses and are an important therapeutic target in cancer and cardiovascular diseases.

Ext. 2012
Jacob Fog Bentzon

Heart attack and many cases of ischemic stroke is the result of atherosclerosis; an extremely widespread disease that attacks arteries of humans all over the world. Our research group is devoted to finding new ways of preventing the development of dangerous atherosclerosis, and we focus on two key challenges that currently limit our ability to combat the disease.

Ext. 3307
Juan A Bernal Rodríguez

Our research into cardiovascular disease is based on a simple principle: create to understand, create to treat.

Ext. 4110
Héctor José Bueno Zamora

The group has a strong connection with clinical research in different fields including atherosclerosis, acute coronary syndromes, acute and chronic heart failure, pulmonary hypertension, cardiovascular ageing and frailty, valve heart disease, advanced cardiovascular imaging, genetic and familial CV diseases.

Ext. 3110
José Luis de la Pompa Mínguez

We are interested in the molecular mechanisms that regulate cardiovascular development, homeostasis and disease. Most of our effort centers on the study of the Notch pathway.

Ext. 1158
Miguel Ángel del Pozo Barriuso

Signals are the language of life, mediating the communication essential for cells’ proper behavior.

Ext. 2309
José Antonio Enríquez Domínguez

Our laboratory researches the mammalian mitochondrial electron transport chain (MtETC) and H+-ATP synthase, which together constitute the oxidative phosphorylation (OXPHOS) system.

Ext. 1510
David Filgueiras Rama

The laboratory focuses on investigating from a multidisciplinary approach, the mechanisms underlying cardiac arrhythmias that occur in highly prevalent cardiovascular diseases in the general population, as well as in specific subsets at particular risk of sudden cardiac death.

Ext. 3112
Ignacio Flores Hernández

Recent evidence acquired through radiocarbon dating of DNA unequivocally establishes that human hearts renew their own cells in adult life.

Ext. 4260
Valentín Fuster Carulla

Investigators Valentín Fuster, Javier Sanz (CNIC, Icahn School of Medicine at Mount Sinai), José María Castellano (CNIC, Hospital Universitario HM Monte Príncipe), Antonio Fernández-Ortíz (CNIC, Hospital Clínico San Carlos), Leticia Fernández Friera (CNIC, Hospital Universitario HM Monte Príncipe), Beatriz López-Melgar (CNIC, Hospital Universitario HM Puerta del Sur), Inés Garc

Ext. 1159
Alicia García Arroyo

Angiogenesis, the formation of new capillaries, is closely linked to inflammation.

Ext. 1504
Andrés Hidalgo Alonso

Our laboratory is interested in the biology of inflammation and immune cells.

Ext. 4302
Borja Ibáñez Cabeza

Our laboratory focuses on the study of myocardial diseases, ranging from ischemia/reperfusion to heart failure. Our studies span the molecular origins of disease and their manifestations at the macro-anatomical and physiological levels, and our group includes experts in molecular biology, clinical cardiology and cardiovascular imaging.

Ext. 1512
José Jalife

The cardiac arrhythmia laboratory, led by José Jalife, has joined the CNIC in September 2014.

Ext. 3309
Enrique Lara Pezzi

Our lab studies the molecular mechanisms that regulate cardiac development and heart disease. One of our main interests is the role of alternative splicing (AS) in these processes.

Ext. 3109
Miguel Manzanares Fourcade

How the genome is co-ordinately regulated during development is one of the major unanswered questions in modern biology.

Ext. 2009
Pilar Martin

Understanding peripheral mechanisms operating in autoinmmune and chronic inflammatory diseases is critical for the design and development of novel therapies against these immunological disorders.

Ext. 3117
Nadia Mercader Huber

The epicardium is a unicellular epithelial layer of that envelops the myocardium. It derives from the proepicardium (PE), a group of cells that arises at the inflow tract of the forming heart. PE cells attach to the myocardium and form an epithelial covering, called the epicardium.

Ext. 4310
Pura Muñoz Cánoves

Our group aims to understand the cellular and molecular mechanisms regulating striated muscle regeneration and growth in physiology and pathology, as well as in aging.

Ext. 4120
Silvia Priori

Grupo de reciente creación. En breve, publicaremos toda la información al respecto.

Ext. 2020
Almudena Ramiro

B lymphocytes are key players of the immune response, mostly through the generation of a hugely diverse repertoire of protective antibodies.

Ext. 1150
Juan Miguel Redondo Moya

Many important biological processes, including the regulation and development of the immune and cardiovascular systems, are regulated by the calcineurin (CN)/NFAT pathway. Much of our previous work relates to molecular interactions of CN with substrates. We are now studying the regulation and function of this pathway in inflammation, cardiovascular and inflammatory diseases.

Ext. 3306
Mercedes Ricote Pacheco

Nuclear hormone receptors constitute a superfamily of ligandactivated transcription factors with diverse roles in development and homeostasis..

Ext. 2004
Guadalupe Sabio Buzo

Metabolic syndrome is a medical disorder defined by the co-occurrence of obesity, impaired glucose tolerance, dyslipidemia and hypertension.

Ext. 2000
Francisco Sánchez Madrid

Intercellular communication is fundamental to the innate and adaptive immune responses.

Ext. 2010
David Sancho Madrid

Dendritic cells (DCs) are key immune sentinels that initiate and modulate immunity and tolerance. Manipulation of DCs holds promise as a potent immunotherapy tool for many diseases with an immune component, including infectious diseases, cardiovascular diseases, autoimmune diseases, and cancer.

Ext. 3107
Miguel Torres

We are interested in understanding the cellular basis of developmental processes and how this is controlled by transcription factor networks (TFN). We have developed genetic methods in the mouse that allow us to trace cell lineages using clonal analysis or functional mosaics.

Ext. 3324
Jesús María Vázquez Cobos

Our group works on the development of high-throughput quantitative approaches for the dynamic analysis of the deep proteome, which are being applied to basic and translational projects in the cardiovascular field.